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ABSTRACT 
 

In this research, fiber Bragg grating (FBG) optical temperature sensors are used for structural health monitoring of 

composite materials.  The specific goal is to detect the thermal response of a composite to high energy radiation 

incident on the surface of a composite structure.  The unique optical characteristics of FBG sensors permit rapid 

detection of highly localized temperature gradients in a host structure, making FBGs well-suited for this application. 

 

FBG sensors also respond to axial strain in the optical fiber, thus any structural strain experienced by the composite 

is also detected.  Therefore the embedded FBG sensors respond to the mechanical strain in addition to any thermal 

effects.  Consequently, this research has focused both on identifying the unique characteristics of each response and 

on developing feasible methods to isolate the thermal response from the strain response.  Isolation ensures that any 

response to mechanical strain does not mask the response to a temperature gradient present on the composite 

surface.  

 

The isolation strategy developed in this research is characterized by two design features.  First, a three-dimensional 

array of FBG temperature sensors has been embedded in a carbon/epoxy composite structure, consisting of both in-

plane and through-thickness sensor arrays.  This architectural design component exploits the spatial differences 

between the temperature profile and the strain profile in a composite structure.  Second, an accompanying data 

processing scheme has been developed that uses the statistical properties of the collected sensor data to interpret and 

identify each response.  Both design features are presented here, and the degree to which the isolation strategy 

increases the functionality of FBG temperature sensors in mechanically strained composite structures is assessed. 

 

Keywords: fiber Bragg grating, composites, temperature gradient, strain, data processing, structural health 

monitoring 
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1. INTRODUCTION 

Embedded optical sensors have several advantages over alternative electromechanical systems for structural health 

monitoring (SHM).  While electromechanical “smart” sensors are of limited use in environments prone to 

electromagnetic interference (EMI), infrared optical networks are effectively immune to EMI.
[1]

  Perhaps more 

pertinent to this research, the ability to multiplex optical signals on different wavelengths allows several sensors to 

be present in a single optical fiber.  Whereas thermocouples and strain gauges require two copper leads per device, 

one optical fiber can contain many distinct sensors. 

 

Optical fiber Bragg gratings (FBGs), in particular, are highly sensitive to both temperature and strain.  This dual 

response is a potential problem for widespread application of embedded FBGs; if both thermal effects and 

mechanical strain are present, one response may mask the other.  Accordingly, FBGs are often employed as 

temperature sensors in environments isolated from excessive mechanical strain
[2]

 or as strain sensors in 

environments insulated from excessive thermal effects.
[3]-[4]

  However, effective FBG use in SHM applications 

cannot be so limited. 

 

The goal of this research was to embed FBG temperature sensors in composite structures, and to successfully detect 

a localized thermal gradient in the presence of mechanical strain.  The strategy to isolate the thermal and strain 

responses of embedded FBG sensors had two aspects.  First, an architectural design component used a three-

dimensional FBG array embedded in a two-ply carbon/epoxy composite structure.  This sensor array was designed 

such that thermal responses were distinct and identifiable compared with strain responses.   Second, a data 

processing algorithm supplemented the architectural component.  The algorithm used a statistical analysis of the 

sensor data to detect any potential localized thermal gradients. 

 

2. THEORY 

2.1  Fundamental FBG Characteristics 

Physically, a fiber Bragg grating is a sinusoidal variation of the core index of refraction in the longitudinal direction 

of a fused silica optical fiber (see Figure 1).  When broadband light propagating in an optical fiber is incident on an 

FBG, a narrow band of wavelengths reflects back toward the source.  This reflection spectrum is typically 

narrowband and centered around the Bragg wavelength, B, of the FBG.  The Bragg wavelength is dependent on the 

physical geometry of the grating and the optical parameters of the silica core.  Ideally, other wavelengths are 

completely transmitted through the grating. 

 

 
Figure 1: Longitudinal profile of a conventional FBG, where L is the grating length, ne is the effective index 

of refraction of the fiber core,  is the spatial period, and B is the Bragg wavelength. 

 

Quantitatively, the Bragg wavelength depends on the effective index of refraction of the fiber core ne and the spatial 

period of the grating’s sinusoidal index variation , as described by:   

 

           (1) 

 

In optical communications, FBGs are often used as narrow-band filters or to perform wavelength division 

multiplexing (WDM) or demultiplexing of information on different optical frequencies.  To use FBGs in sensor 
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applications, however, the FBG response to physical stimuli must be characterized.  The Bragg wavelength is highly 

dependent on both the grating temperature and mechanical strain in the optical fiber.  Differentiating Equation (1) 

with respect to both T (temperature) and  (strain) gives  

 

    
  

    
  

  
   

   
  
   (2) 

   

    
  

    
  

  
   

   
  
   (3) 

 

Some simplifying assumptions are helpful to distinguish the temperature and strain dependence of B.  The 

temperature dependence of the Bragg wavelength is primarily a function of the thermo-optic properties of the fused 

silica glass.  Because silica glass has a low coefficient of thermal expansion, the variation in ne with respect to T is 

much larger than the variation in .  Hence, the second term in Equation (2) is dominant.  In contrast, the variation 

in  due to strain  (elongation or contraction) is considerably larger than the variation in ne, so the first term in 

Equation (3) primarily determines the shift in B due to strain.
[1]

  Thus, the thermal FBG response is primarily due to 

the temperature dependence of ne while the strain response depends primarily on variation in the value of .   

 

Based on these practical assumptions, Equations (2) and (3) are more simply stated as: 

 

    
  

   
   
  
   (4) 

   

    
  

    
  

  
   (5) 

 

For common operating temperatures and typical loading conditions, a shift in Bragg wavelength B is linear with 

respect to shifts in temperature T and strain , so that Equations (4) and (5) can be written as 

  

    
  

   
   
  

      
  

  
   (6) 

   

    
  

    
  

  
     

  

  
  (7) 

 

The sensitivity values in (6) and (7) are typical for FBGs written in silica glass fiber with Bragg wavelengths near 

1550 nm.
[1]

  The sensitivity values are different in plastic fibers or metal-clad fibers, for example. 

 

2.2  Thermal Effects on FBGs 

Qualitatively, Equation (6) describes the temperature dependence of the Bragg wavelength.  An increase in the 

effective refractive index due to temperature causes an increase in the Bragg wavelength.  Figure 2 illustrates this 

effect with and without heat applied to the sensor.  As stated in Equation (6), the constant of proportionality (or 

sensitivity) for such a shift is 10.3 pm/°C.  The thermal sensitivity is itself dependent on other environmental factors, 

so its value must be precisely calibrated for high-accuracy temperature measurements.
[5] 
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Figure 2: Diagrams show the effect of heat on the Bragg wavelength.  (a) With no heat applied, B follows 

Equation (1) as expected.  (b) If the FBG is exposed to a heat source (i.e. a heat gun), then B experiences a 

positive shift of B.   

 

2.3  Strain Effects on FBGs 

Equation (7) describes how strain affects the Bragg wavelength.  A change in the grating period due to compression 

or tension causes a proportional change in the Bragg wavelength equal to 1.2 pm/.  Figure 3 illustrates this effect 

for two cases: no strain and tension/compression.   

 

 
Figure 3: Diagrams showing the effect of strain on the Bragg wavelength.  (a) When no strain is applied, B 

follows Equation (1).  (b) When strain is applied to the fiber, B experiences a shift of B.  In the figure, 

tensile strain is applied, elongating the grating and causing a positive shift in the Bragg wavelength.  

Alternatively, if compressive strain is applied, the grating experiences a downshift in the Bragg wavelength. 

 

2.4  FBG Interrogation 

To monitor shifts in the Bragg wavelength of an FBG, an interrogation scheme is required.  Various techniques can 

be used to interrogate an FBG sensor.  The most common uses a tunable laser or broadband source to scan through 

the wavelength band to be interrogated.  The signal reflected from the FBG is separated from the transmitted signal 

using a circulator between the tunable laser and the sensors.  A power sensor is used to monitor the reflected optical 

power.  Data acquisition software in the interrogator determines the peak reflected power level that corresponds to 

the Bragg wavelength.  This process is illustrated in Figure 4.   
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Figure 4: Smart Fibres© SmartScan Interrogator is used to track the Bragg wavelengths of four FBG sensors. 

 

Two interrogator options were available for this project.  High spectral resolution using a single scan with 

wavelength intervals as small as ~10pm could be achieved using standard optical components (i.e. tunable lasers, 

circulators, power sensors) already present in the lab.  To further improve the spectral resolution, interpolative peak-

detection techniques were sometimes applied to the collected data.  For more rapid, dynamic scans, a Smart Fibres© 

SmartScan high speed interrogator was also available that can scan the spectrum between 1525 nm and 1565 nm on 

four separate input channels at rates up to 2.5 kHz per channel.  The spectral resolution was reduced when scanning 

at higher rates.  In this research, most of the thermal and strain responses required a dynamic scan, so the SmartScan 

interrogator was primarily used. 

 

3. STRUCTURAL ISOLATION METHODOLOGY 

To use embedded FBGs as temperature sensors in a composite structure, it is necessary to isolate the thermal 

response of the sensors from the strain response.  There are two features of the overall isolation strategy pursued in 

this research.  First, FBG sensor fibers are embedded in an architectural arrangement that ensures the FBG responses 

due to strain are predictable (i.e. deterministic).  Second, the responses from the sensors are then processed using an 

isolation algorithm written in MATLAB®.  The data processing algorithm uses the sensor response data to 

determine if a localized thermal gradient is present in the composite structure. 

 

3.1 Through-Thickness FBG Array Design 

Ignoring torsion and other higher-order effects, the simplest strain experienced in a long, wide, and thin structure 

(i.e. a wing) results from bending.  When such a structure bends, one face experiences compression and the other 

face experiences tension.  One method to isolate a thermal response from a strain response uses an array of FBGs 

embedded through the thickness of the structure, as shown in Figure 5.  The shift in Bragg wavelength for each 

grating varies depending on its depth in the structure.  For example, in Figure 5, the Bragg wavelength B of the top-

layer FBG shifts to a higher value to indicate tension.  The FBG in the middle experiences no shift in B because it is 

located along the strain-neutral axis.  Lastly, the bottom-layer FBG shifts to a lower B value due to compression. 
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Figure 5: Through-thickness FBG array experiences symmetric strain on both faces during bending.  The 

inner face experiences compression and the outer face experiences tension.  The centrally located FBG is 

located along the strain-neutral axis and experiences no strain effects. 

 

Without thermal effects, the response of the top- and bottom-layer FBGs are symmetric about the neutral axis.  

However, if an FBG on one face experiences a temperature-based upshift in Bragg wavelength, the FBG response 

through thickness becomes asymmetric.  To detect thermal gradients using this method, the interrogation system 

must monitor the degree of symmetry found in the through-thickness FBG array.  Asymmetric through-thickness 

responses indicate the presence of localized thermal gradients on one surface.  This method requires thicker 

structures with sufficient thermal mass to insulate thermal effects between the opposing faces.   

 

3.2  In-Plane FBG Array Design 

Another method to isolate a thermal response from a strain response using multiple sensors in an FBG array is to 

orient the sensors so that they all experience similar mechanical strain.  Changes in the response of individual 

gratings in such an array would indicate the presence of a localized thermal gradient.  Since FBGs responds to axial 

strain in the host fiber, all sensor fibers should be oriented parallel to each other.  This requires a planar array of 

parallel fibers that run through the length of the structure.  An example is the in-plane n x m sensor array illustrated 

in Figure 6.  There are n sensor fibers in the array, each with m FBG sensors per fiber.  

 

By embedding parallel sensor fibers within or below the surface of a composite structure, bending induces a similar 

response in each grating in the array.  Since all FBGs are embedded at the same depth in the structure, all FBGs in 

the array uniformly experience either tension or compression.  If a localized thermal gradient is also present, this 

uniformity is lost.  Thus, a non-uniform response from an in-plane FBG array indicates the presence of thermal 

gradients in the structure.   
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Figure 6: An n x m in-plane FBG array embedded in a composite structure.  Ideally, all gratings experience 

uniform axial strain.  If an FBG experiences a localized thermal gradient (shown as the shaded area above), 

this uniformity is lost and the thermal gradient has been detected. 

 

3.3  Three-Dimensional FBG Array Design 

A three-dimensional FBG array embedded in the plane of a composite and through its thickness can be used to 

perform a comprehensive analysis of thermal and strain effects.  To explore this methodology, a 3x2x2 test array of 

FBGs was embedded in a two-ply carbon/epoxy composite structure, as shown below in Figure 7.  The nominal 

Bragg wavelength is shown adjacent to each FBG (B is given in nm). 

 

 
Figure 7: A three-dimensional 3x2x2 FBG array.  (a) Sensor fibers and FBGs are indicated.  There are three 

layers of 2x2 in-plane FBG arrays interleaved above, between, and below two plies of carbon fiber weave.  

Each FBG is approximately 1 cm in length.  (b) A photograph of the embedded FBG array. 

 

To interrogate the six sensor fibers of the test array with the four available input channels on the SmartScan 

interrogator, wavelength division multiplexing (WDM) is used.  Functionally, WDM is a combination of multiple 

optical signals that each occupy separate wavelength bands.  Figure 8 illustrates the interrogation architecture using 

a WDM device.  The interrogator transmits a broadband infrared signal between 1525 nm and 1565 nm.  This signal 
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is split (demultiplexed) by the WDM device, which is manufactured to operate in two specific wavelength bands.  

Wavelengths between 1547-1561 nm propagate from the upper port of the WDM device  in Figure 8 to the upper 

fiber in the composite.  Signals between 1529-1542 nm propagate from the lower port.  For each fiber in the 

composite, reflections occur in a narrow spectral window at the Bragg wavelengths of each FBG.  The reflected 

signals are recombined (multiplexed) by the WDM device and return to the interrogator.  Using this WDM scheme, 

each interrogator input channel monitors two sensor fibers.  This scheme is replicated for each of the three fiber 

layers of the 3x2x2 FBG array, using three of the SmartScan interrogator input channels. 

 

 
Figure 8: WDM scheme used to interrogate a 3x2x2 FBG array.  Nominal Bragg wavelengths of the gratings 

are given in nm. 

 

4. COMBINED THERMAL AND STRAIN TESTING 

After initial testing on simpler composite structures to investigate thermal and strain responses of embedded FBGs, 

combined thermal and strain tests were conducted with the 3x2x2 test array.  The goal of these tests was to validate 

the structural isolation techniques described above. 

 

4.1  Nondestructive Test Setup 

For nondestructive testing of the sample, a conventional heat gun was used to produce localized temperature shifts 

of 100°C or slightly higher in the material.  Thermal effects on this scale are not significant enough to permanently 

damage the composite structure containing the 3x2x2 test array.  However, the thin composite samples used in this 

research did experience some warping when exposed to the heat gun for long time periods.  The heat gun provided a 

convenient benchtop heat source, but it cannot produce highly localized thermal energy on the face of the composite.  

For example, when the heat gun was directed at only one specific grating in the FBG array, thermal effects were 

exhibited by all gratings in the plane of the composite, as shown in Figure 9.  However, the heat gun was useful for 

initial nondestructive testing. 
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Figure 9: Thermal response of the four FBGs embedded in the front plane of the 3x2x2 array.  A heat gun 

directed at the 1555 nm sensor was turned on at 120 seconds.  The FBG sensors all respond with an upshift in 

the corresponding Bragg wavelengths. 

 

To induce controlled oscillatory strain in the composite sample, a cyclic strain apparatus was constructed.  The 

apparatus used a 24 Volt DC electric motor geared to achieve a maximum of 109 RPM at full voltage.  A circular 

aluminum disc was attached to the end of the motor’s axle.  By offsetting the axle from the center of the disc, a 

rotation of the disc about the axle while in contact with the composite structure deflected the structure a known 

amount.  As the motor rotated cyclically, the composite experienced a repeatable, cyclic deflection.  For this 

research, the disc was designed to create a 1.3 cm deflection with every rotation. Figure 10 shows a top view 

diagram and a side view photograph.  Figure 11 illustrates the through-thickness strain response of three sensors 

when the cyclic strain apparatus is used to deflect the 3x2x2 test array.  Figure 12 shows a combined thermal/strain 

setup with the heat gun and the cyclic strain apparatus. 
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Figure 10: (a) Top view of the cyclic strain apparatus in contact with a rigidly clamped composite structure.  

As the disc rotates, the structure deflects accordingly.  (b) Side view of the cyclic strain apparatus 

(foreground) with a DC voltage source (background) to provide the desired drive voltage.  Here, 9.00 Volts 

DC are applied. 

 

 
Figure 11: Through-thickness strain response of FBGs when cyclic strain is applied to the host structure.  

Through the thickness, one FBG sensor responds to cyclic tension, the middle layer sensor experiences 

minimal strain on the strain-neutral axis, and the last FBG sensor responds to cyclic compression. 
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Figure 12: (a) Top view of combined thermal and strain test setup.  A conventional heat gun applies heat and 

the cyclic strain apparatus applies cyclic strain.  (b) Side view of the same test setup, with a free body 

diagram of the composite with the load. 

 

4.2  Infrared Laser Test Setup 

As noted above, a heat gun is not necessarily effective as a localized heat source, so an alternative source was 

needed to generate a highly localized thermal gradient on the surface of the composite.  A 1070-nm infrared laser 

was used that generated 25 W of optical power focused onto a 5 mm diameter spot size.  The laser can generate a 

maximum possible power of 100 W in a 5 mm spot, giving a maximum irradiance of 500 W/cm
2
.  At these higher 

optical power levels, the composite can suffer permanent damage depending on the length of time the laser is 

incident on the composite surface.  The thermal conductivity of the carbon/epoxy composite was too small to 

dissipate the large, rapid deposit of thermal energy.  As a result, the laser bored a hole through the thin two-ply 

structure after roughly 20 seconds.  In these tests, laser energy was applied to the composite with the embedded 

3x2x2 FBG array for 20 seconds at two target locations, as shown in Figure 13.  To avoid permanent damage to the 

1555 nm FBG sensor, the laser was not aimed directly at the grating.  Instead, the target locations were at least 1.0 

cm away, preserving all of the FBGs for additional tests.  The testing conditions described here intentionally limited 

the thermal effects produced by the laser to ensure useful data collection without causing permanent damage to the 

FBGs. 
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Figure 13: Infrared laser target locations 1 and 2 displayed with dimensions on the 3x2x2 FBG array (side 

view as seen in Figure 12(b)).  The left end of the composite is firmly clamped.  Strain is applied to the right 

side.  Figure not to scale.  All nominal Bragg wavelengths are given in nm. 

 

With this higher energy heat source, several precautions are taken.  First, a steady flow of high-velocity nitrogen gas 

is blown over the front face of the composite, extinguishing flames that result from the laser energy.  Second, a 

vacuum is placed above the composite structure, removing smoke, ash, and other debris created during the lasing 

process.  The high-velocity nitrogen flow and the vacuum ensure that the composite surface is clean and free of soot 

and debris, and that the majority of the incident optical energy is absorbed directly into the composite structure, 

creating a well-defined and localized temperature gradient.  The complete test chamber setup is shown in Figure 14.  

The cyclic strain apparatus shown in Figure 14 was used to induce a 0.3 Hz oscillatory mechanical strain. 

 

 
Figure 14: Complete test chamber setup for combined thermal and strain tests using a 25-Watt infrared laser.  

This figure shows the front face of the composite structure containing the 3x2x2 FBG array.  This is the 

incident face for the infrared laser beam. 

 

4.3  Infrared Laser Test Results 

The front face sensor responses for lasing at target location 2 (from Figure 13) are presented in this section.  For the 

test setup shown in Figure 14, the front face and the back face experienced cyclic tension and compression, 
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respectively.  The FBG array between the composite plies on the strain-neutral axis experienced minimal strain due 

to bending.  After reviewing the data, it was determined that the composite structure was too thin to effectively use 

the through-thickness isolation strategy; nearly identical thermal effects were present through the structure 

thickness, preventing detection of a thermal gradient on only one face.  The through-thickness isolation strategy may 

be more effective with a thicker composite structure.  For this architecture, although the thermal effects could not be 

easily isolated from the strain effects using the through-thickness FBG array, thermal effects were highly localized 

in-plane, as the results will show. 

 

Figure 15 shows the combined strain and temperature responses of the FBGs on the front face.  The 0.3 Hz cyclic 

loading caused the FBGs on the front face to oscillate between a negligible Bragg wavelength shift and a positive 

Bragg wavelength shift, as shown in Figure 15.  At time 20 seconds, the infrared laser turned on, aimed 1.0 cm 

above the 1555 nm FBG.  At time 40 seconds, the laser was turned off.   

 

 
Figure 15: Front face in-plane response for four FBGs.  Cyclic tension on this composite face induces the 

sinusoidal features seen in each trace.  At 20 seconds, the infrared laser is turned on.  At 40 seconds, the laser 

is turned off.  Localized thermal effects are measured by the 1555 nm sensor.  The diagram to the right shows 

the location of each of the sensors on the composite surface and the location of the target. 

 

In Figure 15, two important initial observations can be made about the thermal response.  First, a thermal gradient is 

observed only in the sensor response of the 1555 nm FBG, as expected based on the proximity of target location 2 to 

the 1555 nm FBG.  Second, the thermal response of the 1555 nm FBG appears to be very consistent with earlier 

tests performed on a similar carbon/epoxy test structure that did not include strain effects.
[5]

  Similar to those tests, 

although the maximum shift in the Bragg wavelength is delayed by more than 20 s after the laser is turned on, some 

heating is observed almost immediately, as shown in Figure 15 by an upshift in B (in the solid curve) within 

seconds after the laser energy is applied.  This is expected because of the higher thermal conductivity of the carbon 

epoxy/composite when compared to materials such as E-glass/epoxy composites, which demonstrate slower 

response times. 

 

There is one additional observation based on the results in Figure 15.  For the oscillating strain responses in Figure 

15, there are two distinct amplitudes.  The oscillations with the smaller amplitude shift (0.45 nm) occur in the 1550 

nm and the 1532 nm FBGs.  As shown in Figure 13, these gratings are embedded closest to the unclamped end of 

the structure, where the strain is applied.  In contrast, the larger amplitude (0.7 nm) oscillations occur in the 1555 nm 

and the 1537 nm FBGs.  These gratings are embedded farther from the mechanical load.  This result is expected for 

a beam-like structure fixed at one end.  Figure 16 illustrates a free-body diagram of this structure. 
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Figure 16: Free-body diagram for the 3x2x2 test array structure in Figure 13 under loading conditions (top 

view).  Location 1 corresponds to the position of the 1550 and 1532 nm sensors.  Location 2 is at the position 

of the 1555 and 1537 nm sensors. 

 

With reference to Figure 16, the strain at distance xi from the load is proportional to xi, such that 

 

 
    

  

 
   (8) 

 

where the dimension L is defined as the distance from the clamp to the load.  To compare the relationship between 

sensor strain responses at locations 1 and 2, a strain compensation factor is defined as 

 

 
    

  

  
   

  

  
   (9) 

 

Solving Equation (9) at locations 1 and 2 with x1 = 4.5 cm and x2 = 7.5 cm gives strain compensation factors of K1 = 

1.00 and K2 = 0.60.  Graphically in Figure 15, this means that if the FBG responses from location 2 (for the 1555 nm 

and 1537 nm sensors) are scaled to 60% of their original value, the compensated strain responses will match at both 

locations.  It is evident from Figure 15 that this is accurate.  Strain compensation was a critical component in the 

data processing algorithm that was developed and will be discussed further below. 

 

5. DATA PROCESSING ALGORITHM 

There were two fundamental design requirements for the data processing algorithm that was developed to analyze 

the responses from the 3x2x2 sensor array.  First, the algorithm must accurately detect localized thermal gradients 

with a high degree of probability.  Second, the algorithm should be relatively fast, with a reasonably short execution 

time, allowing for repeated scans of the sensor array in real time.  Ultimately, the specific software implementation 

that is needed to support each requirement depends on the specific design and application of the sensor array.  As a 

proof-of-principle data processing demonstration, both design requirements are given equal importance in this 

research. 

 

Figure 17 depicts the data processing algorithm using a block diagram.  The data requires some initial preparation 

before processing with the thermal gradient detection algorithm.  Each segment of this block diagram will be 

addressed below. 
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Figure 17: Block diagram overview of the data processing algorithm. 

 

5.1 Initial Data Preparation 

After the test data was collected by the SmartScan interrogator, it was imported into MATLAB® for initial 

processing.  To account for any anomalous values collected by the interrogator, each of the data vectors recorded for 

the 12 FBGs in the 3x2x2 array are analyzed to detect unusual outliers in the data.  Since the SmartScan interrogator 

repetitively records the Bragg wavelength of an FBG at a relatively high scan rate, an outlier is any shift in the 

Bragg wavelength from sample time tk-1 to time tk that is unreasonably large.  For the 500 Hz scan rate (tk – tk-1 = 2 

ms) used in this research, any Bragg wavelength jump of more than 2 nm was considered to be anomalous and was 

replaced with the previous valid Bragg wavelength.  This is logical, given that the actual response time of an FBG 

temperature sensor is typically around 50 ms.
[5]

 

 

Once outliers are removed, the data can be downsampled if desired to reduce the execution time of the algorithm.  

Downsampling is a process whereby every nth sample in the data vector is retained and all other data values are 

discarded.  In effect, downsampling decreases the scan rate by a factor of n, thereby also reducing the stored data by 

a factor of n.  This is common in signal processing and can be used if the scan rate (500 Hz in these tests) is larger 

than needed to capture the transient effects of temperature and strain.  In the controlled laboratory environment of 

this research, all thermal and strain effects occurred at low frequencies (1-20 Hz), so downsampling from the 500 Hz 

scan rate was appropriate and reduced the algorithm execution time.  In general, however, further testing would be 

required to assess if downsampling is appropriate for a given architecture and its anticipated operating environment. 

 

Lastly, all data vectors were filtered using a zero-phase distortion low pass filter (LPF) to remove any strain 

responses resulting from vibrations at the natural resonance frequency of the structure.  For the host structure of the 

3x2x2 FBG array (with a length of 11.4 cm), the fundamental resonance occurred at 18.5 Hz when clamped on the 

end.  To remove any noise in the data vector due to natural vibrations, the LPF was applied with a corner frequency 

below this frequency.  Figure 18 is a graphical example of the effects of LPF filtering.  In the figure, the original 

signal was generated by flicking the composite structure diagramed in Figure 16 every second or so with a finger, 

causing vibration in the composite at its natural resonant frequency.  The LPF removes the vibrations due to the 

natural resonance while preserving the compression impulses (bold curve) due to flicking. 
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Figure 18: Effects of LPF on a signal containing a natural resonance frequency response at 18.5 Hz.  The 

corner frequency of the LPF was 15 Hz—low enough to remove the 18.5 Hz resonance. 

 

5.2 Thermal Gradient Detection 

The thermal gradient detection algorithm relies on a statistical comparison of the FBG responses of all four gratings 

in each layer of the 3x2x2 array.  Although the statistical analysis is repeated for each fiber layer (front face, middle, 

and back face), for simplicity, this discussion will describe the algorithm as it applies to a single layer. 

 

First, the four FBG responses are time averaged over the scan time window, with the average wavelength shift 

represented as 〈  〉  , where i = 1,…,4.  The appropriate strain compensation factor    is then applied, dependent on 

the sensor position xi along the composite.  The four sensor responses can then be characterized by their 

compensated mean values   : 
 

       〈  〉                   (9) 

 

The standard deviation    of the four values of    is given by 
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   (10) 

 

The parameter values    and    are the fundamental statistical parameters describing the response of the four sensors 

at a given layer in the composite structure. 

 

To determine if the statistical parameters indicate that a temperature shift has occurred, the largest (maximum)    
value is first replaced by the average of the remaining three    values in order to eliminate any outliers in    due to a 

thermal gradient.  Based on the revised values of   , the standard deviation          is then recalculated.  If the 

revised standard deviation is unchanged, such that              , then no thermal gradient is likely present on the 

composite surface.  However, if the ratio of these two standard deviations, given by  

 

    
  

        
   (11) 

 

is large enough, a localized thermal gradient may be present.  An empirically determined threshold value for   was 

chosen between 1.5 and 1.7.  For values of   below the threshold, no localized thermal gradient is present.  If   

exceeds the threshold, then a thermal gradient is present.  
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Figure 19 depicts a graphical representation of the algorithm for the data presented in Figure 15.  As shown on the 

left side of Figure 19, the original four values of    and the corresponding standard deviation are calculated, 

resulting in    = 0.0421 nm.  The maximum value of the four    (associated with the FBG nearest to the laser target 

location) is replaced by the average of the remaining three values of   .  After removing the localized effect, 

associated with the 1555 nm FBG, the standard deviation drops appreciably to          = 0.0110 nm.  For the data in 

Figure 15,   = 0.0421nm/0.0110nm = 3.8177 > 1.7, indicating that the algorithm correctly detected the presence of a 

localized thermal gradient. 

 

 
Figure 19: Graphical representation of the thermal detection algorithm.  See Figure 15 for the original FBG 

responses.  (a) The four    values are plotted.  (b) The maximum    is replaced by the average of the 

remaining three   ’s.  The standard deviations of both sets of values are given in bold above. 

 

This statistical approach is chosen instead of more sophisticated data processing techniques primarily for the sake of 

efficiency and as an initial proof-of-principle.  Increasing the sophistication of the algorithm generally entails more 

data manipulation.  As the array size is scaled up, the set of    values per layer scales to i = 1, 2, …, n x m.  It is 

clear that scaling up three-dimensional arrays quickly increases the processing time.   Using easily calculated 

statistical parameters such as the average and standard deviation may save valuable execution time over alternative 

approaches. 

 

5.3 Algorithm Results 

The data processing algorithm written to process the data in Figure 15 requires four arguments.  To filter the natural 

resonance of the structure, a corner frequency of 15 Hz is used.  The data is downsampled by a factor of 10, 

reducing the effective sample rate form 500 Hz to 50 Hz.  A standard deviation threshold of 1.7 is chosen to 

compare to the ratio  .  Lastly, a strain compensation factor of K2 = 4.5cm/7.5cm = 0.60 was used.  Using these four 

parameters and the input data file, the MATLAB® script determines that a highly localized thermal gradient is 

present, as shown in Figure 20. 
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Figure 20: MATLAB® Command Window excerpt showing a function call to the algorithm named 

“detect_heat_3by2by2_revision”.  For these input arguments, the algorithm correctly determines that highly 

localized thermal gradients are present. 

 

6. CONCLUSIONS  

Several conclusions are evident.  First and foremost, embedded fiber Bragg grating temperature sensors can be used 

to detect localized thermal gradients on the surface of a composite even in the presence of mechanical strain.  The 

speed of detection remains to be determined, as it depends on numerous other factors, such as the thermal 

conductivity of the composite, the structural architecture, the spacing of the FBG sensors, and the execution time of 

the detection algorithm. 

 

With regard to structural isolation, the through-thickness array remains promising for detecting localized thermal 

gradients in thick structures with sufficient thermal mass to prevent surface-layer thermal effects from penetrating 

quickly through the depth of the structure.  The in-plane array is more appropriate for thin composite structures.  

Important parameters for the design of a real structure, such as the number and spacing of sensors throughout the 

array, the thickness of the composite, and the type of materials, depend on many factors.  The specific application 

and the physical dimensions of the temperature gradient (i.e., spot size of the laser) must be known before a real 

“smart” structure can be designed and implemented. 

 

For the data processing algorithm, a statistical analysis of the data collected from the 3x2x2 FBG array was effective 

and efficient.  Depending on the operating environment of the embedded FBG array, various data preparation 

techniques may be needed before the thermal detection algorithm is applied.  Examples include downsampling and 

filtering of natural vibration resonances using a zero-phase distortion LPF.  For a real-time isolation strategy, the 

thermal detection algorithm may require the use of running averages with greater precision and accuracy to rapidly 

detect the presence of a thermal gradient on the surface of the composite.  As before, the specific application of the 

sensor array will impact the design choices required to appropriately tailor this proof-of-principle strategy. 

 

7. FUTURE WORK 

Significant research is still needed to effectively use embedded FBG sensor technology in composite structures.  

Given the breadth of possible applications for SHM in composites, more focused research is needed to characterize 

both temperature and strain effects in composites.  To better understand the thermal effects, the interaction between 

convection and conduction as heat transfer mechanisms bust be analyzed to determine their influence on the sensor 
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network design.  Additionally, further development of the data processing algorithm is necessary, as it could assist 

in determining the severity and spatial location (in three dimensions) of a thermal gradient.  This would require a 

more detailed analysis of the response data from an n x m array of sensors through the thickness of a structure.  Such 

information is important in order to model heat transfer in composite materials. 

 

A more rigorous analysis of complex strain effects must also be considered.  In this research, strain was applied in a 

deterministic, oscillatory manner; unfortunately practical applications of such sensor arrays will not likely 

experience such controlled strain profiles.  A more stochastic application of strain in time should be considered, and 

the accompanying data processing features should be modified accordingly.  This will require emphasis on 

developing a real-time data processing scheme.  In this research, data was collected during each test and processed 

later.  Any practical application of a data processing algorithm must necessarily be able to process incoming data as 

quickly as it is gathered.  As such, the execution time of this algorithm must be reduced to ensure detection in a 

minimal amount of time.  It is clear that there is a significant opportunity and need for further research in the field of 

embedded FBG arrays in composite materials. 
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APPENDIX A: DATA PROCESSING ALGORITHM 
 

Filename: “detect_heat_3by2by2_revision.m” 

 
% Analyzes data collected from the SmartScan interrogator from the 
% 3x2x2 array.  Primary approach will be an in-plane comparison of 
% neighboring gratings. 
% 
% Input arguments: 
% 1.) The filename of a single .txt file containing 13 
% columns of data.  The first, left-most column is a time vector. 
% The remaining 12 columns contain the data from the sensors. 
% 2.) The LPF corner frequency desired for low-pass filtering 
% 3.) Downsample ratio.  If sampling rate is high, downsampling can 
% boost speed of filtering operations. 
% 4.) Standard Deviation ratio threshold.  A thresholding parameter to 
% govern decision-making of whether localized thermal gradients exist 
% in-plane.  Recommended value between 1.4 and 1.7. 
% 5.) Strain Compensation Factor.  Compensates for linear increase in 
% strain for a clamped specimen (0.6 for 3D sample). 
% 
% Fibers in each plane: 
% Fibers 1 & 4: Top/Front plane 
% Fibers 2 & 5: Middle plane 
% Fibers 3 & 6: Back plane 
% 
% Grating arrangement (looking at side labeled "TOP"): 
%                   ------------------------------------------- 
% Top (4,5,6):      |  <Grating D>               <Grating C>  | 
%                   |                                         | 
%                   |                                         | 
% Bottom (1,2,3):   |  <Grating B>               <Grating A>  | 
%                   ------------------------------------------- 
% 
% Signal Processing Scheme: 
% 1. Load all data appropriately 
% 2. Downsample data as desired 
% 3. Filter all data to remove natural vibrational resonance frequencies 
% 4. Determine the presence of a thermal gradient 
% 5. Return results 

  
%-------------------------------------------------------------------------- 

  
function 

detect_heat_3by2by2_revision(filename,f_LPF_corner,downsample_ratio,... 
    stdev_ratio_thresh,SCF) 

  
% clc 

  
local_hit = 0; % establishes a flag variable for detecting localized heat 
               % present in the composite 
Front_plane_local_hit = 0; 
Middle_plane_local_hit = 0; 
Back_plane_local_hit = 0; 
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%-------------------------------------------------------------------------- 

                
% 1. Load data using importdata function 
mystruct = importdata(filename,'\t',5); 
mydata = mystruct.data; 
time = mydata(:,1); 

  
% Front plane: 
peak_4D = mydata(:,2); 
peak_4C = mydata(:,3); 
peak_1B = mydata(:,4); 
peak_1A = mydata(:,5); 
% Middle plane: 
peak_5D = mydata(:,6); 
peak_5C = mydata(:,7); 
peak_2B = mydata(:,8); 
peak_2A = mydata(:,9); 
% Back plane: 
peak_6D = mydata(:,10); 
peak_6C = mydata(:,11); 
peak_3B = mydata(:,12); 
peak_3A = mydata(:,13); 

  
% Declare nominal wavelengths for each grating 
% Nominal Wavelengths 
nom_1A = 1532.54; 
nom_1B = 1537.44; 
nom_4C = 1550.30; 
nom_4D = 1555.37; 
nom_2A = 1532.44; 
nom_2B = 1537.38; 
nom_5C = 1550.29; 
nom_5D = 1555.34; 
nom_3A = 1532.19; 
nom_3B = 1536.96; 
nom_6C = 1550.27; 
nom_6D = 1555.05; 

  
% Scrub channel 3 for outlier entries 
temp = nom_3A; 
for k=2:length(peak_3A) 
    if (abs(peak_3A(k) - peak_3A(k-1)) > 2) 
        peak_3A(k) = temp; % repeat last valid data point 
    else 
        temp = peak_3A(k); 
    end 
end 

  
temp = nom_3B; 
for k=2:length(peak_3B) 
    if (abs(peak_3B(k) - peak_3B(k-1)) > 2) 
        peak_3B(k) = temp; % repeat last valid data point 
    else 
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        temp = peak_3B(k); 
    end 
end 

  
temp = nom_6C; 
for k=2:length(peak_6C) 
    if (abs(peak_6C(k) - peak_6C(k-1)) > 2) 
        peak_6C(k) = temp; % repeat last valid data point 
    else 
        temp = peak_6C(k); 
    end 
end 

  
temp = nom_6D; 
for k=2:length(peak_6D) 
    if (abs(peak_6D(k) - peak_6D(k-1)) > 2) 
        peak_6D(k) = temp; % repeat last valid data point 
    else 
        temp = peak_6D(k); 
    end 
end 

  
%-------------------------------------------------------------------------- 

  
% 2. Downsampling (as desired).  Determine time resolution,  
% sampling frequency 
t_res_hardware = (time(length(time)) - time(1)) / (length(time) - 1); 
fs_hardware = 1/t_res_hardware; 

  
if (downsample_ratio > 1) 
    time = downsample(time,downsample_ratio); 
    peak_4D = downsample(peak_4D,downsample_ratio); 
    peak_4C = downsample(peak_4C,downsample_ratio); 
    peak_1B = downsample(peak_1B,downsample_ratio); 
    peak_1A = downsample(peak_1A,downsample_ratio); 
    peak_5D = downsample(peak_5D,downsample_ratio); 
    peak_5C = downsample(peak_5C,downsample_ratio); 
    peak_2B = downsample(peak_2B,downsample_ratio); 
    peak_2A = downsample(peak_2A,downsample_ratio); 
    peak_6D = downsample(peak_6D,downsample_ratio); 
    peak_6C = downsample(peak_6C,downsample_ratio); 
    peak_3B = downsample(peak_3B,downsample_ratio); 
    peak_3A = downsample(peak_3A,downsample_ratio); 
    fs = fs_hardware/downsample_ratio; 
else 
    fs = fs_hardware; 
end 

  
%-------------------------------------------------------------------------- 

  
% 3. Filter all signals to remove natural frequency responses due to 
% vibration, etc.  Natural resonance frequency of panel clamped on 
% one end for ~1 inch, leaving a ~5.5 inch span of CF two-ply 
% composite to vibrate, is roughly 18.5 Hz.  Use a low-pass filter with  
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% corner frequency f_LPF_corner to cut off all high frequency content  
% (including natural resonance effects). 
filt_4D = ElamSimpleLPF(peak_4D,fs,f_LPF_corner); 
filt_4C = ElamSimpleLPF(peak_4C,fs,f_LPF_corner); 
filt_1B = ElamSimpleLPF(peak_1B,fs,f_LPF_corner); 
filt_1A = ElamSimpleLPF(peak_1A,fs,f_LPF_corner); 
filt_5D = ElamSimpleLPF(peak_5D,fs,f_LPF_corner); 
filt_5C = ElamSimpleLPF(peak_5C,fs,f_LPF_corner); 
filt_2B = ElamSimpleLPF(peak_2B,fs,f_LPF_corner); 
filt_2A = ElamSimpleLPF(peak_2A,fs,f_LPF_corner); 
filt_6D = ElamSimpleLPF(peak_6D,fs,f_LPF_corner); 
filt_6C = ElamSimpleLPF(peak_6C,fs,f_LPF_corner); 
filt_3B = ElamSimpleLPF(peak_3B,fs,f_LPF_corner); 
filt_3A = ElamSimpleLPF(peak_3A,fs,f_LPF_corner); 

  
%-------------------------------------------------------------------------- 

  
% 4. Locate affected Grating set 

  
% --------------------- 
% Front Plane: 
% Create vector with each gating in plane's average peak wavelength, but 
% subtract out each grating's nominal wavelength (gives average wavelenth 
% shift over entire time period) 
Front_plane = [ (mean(filt_4D)-nom_4D) (mean(filt_4C)-nom_4C)... 
    (mean(filt_1B)-nom_1B) (mean(filt_1A)-nom_1A) ] 
% Find standard deviation of these averages 
Weighting = [SCF, 1, SCF, 1]; 
Front_avg_stdev = std(Weighting .* Front_plane) 

  
% Remove largest deviator from vector and recalculate standard 
% deviation 
updated_Front_plane = Front_plane; 
[m,i] = max(Weighting .* updated_Front_plane); 
updated_Front_plane(i) = 0; 
updated_Front_plane(i) = sum(Weighting .* updated_Front_plane/3) 
Weighting(i) = 1; 
updated_Front_avg_stdev = std(Weighting .* updated_Front_plane) 

  
% Determine ratio of previous stdev to recalculated stdev.  If the ratio 
% exceeds stdev_threshold, then consider there to be localized thermal  
% effects in this plane 
Front_plane_stdev_ratio = Front_avg_stdev / updated_Front_avg_stdev 
if (Front_plane_stdev_ratio > stdev_ratio_thresh) 
    Front_plane_local_hit = 1; 
end 

  
% --------------------- 

  
% Middle Plane: 
Middle_plane = [ (mean(filt_5D)-nom_5D) (mean(filt_5C)-nom_5C)... 
    (mean(filt_2B)-nom_2B) (mean(filt_2A)-nom_2A) ]; 
% Find standard deviation of these averages 
Weighting = [SCF, 1, SCF, 1]; 
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Middle_avg_stdev = std(Weighting .* Middle_plane); 

  
% Remove largest deviator from vector and recalculate standard 
% deviation 
updated_Middle_plane = Middle_plane; 
[m,i] = max(Weighting .* updated_Middle_plane); 
updated_Middle_plane(i) = 0; 
updated_Middle_plane(i) = sum(Weighting .* updated_Middle_plane/3); 
Weighting(i) = 1; 
updated_Middle_avg_stdev = std(Weighting .* updated_Middle_plane); 

  
% Determine ratio of previous stdev to recalculated stdev.  If the ratio 
% exceeds stdev_threshold, then consider there to be localized thermal  
% effects in this plane 
Middle_plane_stdev_ratio = Middle_avg_stdev / updated_Middle_avg_stdev 
if (Middle_plane_stdev_ratio > stdev_ratio_thresh) 
    Middle_plane_local_hit = 1; 
end 

  
% --------------------- 

  
% Back Plane: 
Back_plane = [ (mean(filt_6D)-nom_6D) (mean(filt_6C)-nom_6C)... 
    (mean(filt_3B)-nom_3B) (mean(filt_3A)-nom_3A) ]; 
% Find standard deviation of these averages 
Weighting = [SCF, 1, SCF, 1]; 
Back_avg_stdev = std(Weighting .* Back_plane); 

  
% Remove largest deviator from vector and recalculate standard 
% deviation 
updated_Back_plane = Back_plane; 
[m,i] = max(Weighting .* updated_Back_plane); 
updated_Back_plane(i) = 0; 
updated_Back_plane(i) = sum(Weighting .* updated_Back_plane/3); 
Weighting(i) = 1; 
updated_Back_avg_stdev = std(Weighting .* updated_Back_plane); 

  
% Determine ratio of previous stdev to recalculated stdev.  If the ratio 
% exceeds stdev_threshold, then consider there to be localized thermal  
% effects in this plane 
Back_plane_stdev_ratio = Back_avg_stdev / updated_Back_avg_stdev 
if (Back_plane_stdev_ratio > stdev_ratio_thresh) 
    Back_plane_local_hit = 1; 
end 

  

  
%-------------------------------------------------------------------------- 

  
% 5. Make decision and return results 

  
% Decision: 
if ( (Front_plane_local_hit == 1) && (Middle_plane_local_hit == 1) ... 
        && (Back_plane_local_hit == 1) ) 
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    local_hit = 1; 
end % recall local_hit is set to 0 by default 

  
if (local_hit == 1) 
    disp('----------------------------------------------'); 
    disp('  HIGHLY LOCALIZED THERMAL GRADIENTS PRESENT'); 
    disp('----------------------------------------------'); 
    %return; 
else 
    disp('-------------------------------------------------'); 
    disp('  NO highly localized thermal gradients present'); 
    disp('-------------------------------------------------'); 
    %return; 
end 
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Filename: “ElamSimpleLPF.m” 

 
% Applies a low pass filter to an input signal with corner frequency 
% fc in Hz (greater than ~3 Hz).  The sampling frequency, fs, is also a 
% required input.  Returns the filtered signal in vector form. 

  
function filt = ElamSimpleLPF(input, fs, fc) 

  
input_mean = mean(input); % record mean value 
h = fdesign.lowpass(0.00005,fc*2/fs,1,50); % normalized frequencies 
d = design(h,'equiripple'); 
filt = filtfilt(d.Numerator,1,input); % apply filter 
filt = filt * input_mean/mean(filt);  
            % recenter around the mean value of input signal 
return 
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APPENDIX B: PROCEDURE TO EMBED OPTICAL FIBERS IN COMPOSITES 
 

The procedure used in this research to embed optical sensor fibers in composite structures is detailed below.  A 

traditional composite layup procedure was modified to account for two unique challenges regarding optical fibers.  

First, the procedure required precision and skill when handling the bare optical fibers (~150 µm in diameter).  

Second, both ends of the sensor fibers extended out from the sides of the composite structure, as shown in Figure 7.  

The protruding glass was brittle and limited the options available to cure the composite after the layup.   

 

It is strongly recommended that the following procedure be tested prior to embedding the actual sensor fibers.  Much 

less expensive conventional optical fiber pigtails (containing no FBGs) should be embedded in a sample composite 

structure to gain proficiency in handling fibers during the procedure.  Then, after the process is mastered, the 

significantly more expensive FBG sensor fibers may be embedded in the structure. 

 

B.1 Fiber Termination Labels 

To begin, the precise location of each FBG in each fiber was determined using a heat gun.  The fiber was slowly 

moved from side to side in front of the heat gun and the real-time interrogator response was simultaneously 

monitored.  When one of the two FBGs in the fiber responded to the heat on the interrogator, the corresponding fiber 

termination was labeled with a letter, as shown in Figure 21.  “A” corresponded to the 1532 nm FBG, “B” 

corresponded to the 1537 nm FBG, etc.  Labeling each fiber termination ensured that the FBGs would be oriented 

properly when embedded.  A black marker was used to place identification markings on each optical fiber between 

each termination and each FBG.  The markings were at precise locations equidistant from the outer end of each FBG 

and outside the expected boundary of the composite material.  In this manner, the sensor positions can easily be 

located after embedding them in the composite. 

 

 
Figure 21: Fiber termination labels.  The appropriate letter (for each Bragg wavelength) was written on a 

piece of tape around the nearest fiber termination.  The A/B fibers contained the 1532 nm and 1537 nm 

FBGs.  The C/D fibers contained the 1550 nm and 1555 nm FBGs. 

 

The optical fibers used in this research were 3 meters in length.  With roughly 1.5 meters of excess glass fiber on 

either end of the FBG sensors (located in the middle of the fiber), special care was taken to organize and protect the 

numerous bare optical fibers used in this array.  In general, it was easier to handle the excess optical fiber when it 

was gently coiled.  A conventional paper tray was useful to separate and sort the various coils of fiber ends, as the 

photograph in Figure 22 depicts. 
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Figure 22: A conventional paper tray is used to sort the individually coiled optical fibers.  Within a given 

tray, single sheets of paper were used to separate fiber coils.  In the photograph, the middle tray held coiled 

fibers associated with the WDM devices diagramed in Figure 8. 

 

B.2 Composite Layup 

The composite materials for the layup procedure were then prepared.  First, the six sensor fibers of the 3x2x2 array 

were laid out in a parallel fashion.  Each adjacent fiber alternated between A/B and C/D fibers.  Two 3.5 in. x 6.5 in. 

pieces of Fibre Glast 530-C 3K Plain Weave Carbon Fiber fabric were cut from a large roll.  Also, West System® 

105 Epoxy Resin and West System® 206 Slow Hardener were mixed (5 parts resin to 1 part hardener by volume) to 

create the polymer base of the composite structure. 

 

To provide a non-stick surface for work, a 15”x15” piece of KM 1300 bagging material was taped to the work table.  

Fibers 3 and 6 were laid in parallel atop the bagging material and taped at the ends.  Together, these two fibers 

constituted the bottom layer of the 3x2x2 sensor array.  This layup setup is shown in Figure 23. 
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Figure 23: Composite layup setup.  The sensor fibers are labeled and prepared for the embedding process.  

The bottom layer of the 3x2x2 FBG array (Fibers 3 and 6) are in place.  Figure not to scale. 

 

Next, the first ply of carbon fabric was centered atop the FBGs of Fibers 3 and 6.  The fabric was then coated to 

saturation with epoxy resin; a tongue depressor was used to spread the epoxy over the surface.  The adhesive 

properties of the epoxy resin alone kept the carbon fiber fabric in place.  It was not necessary to apply epoxy resin to 

the optical fibers; the curing process described below ensured that they bonded well to the carbon fiber fabric.  The 

middle layer of the 3x2x2 array (Fibers 2 and 5 in Figure 24) was then placed atop the first carbon ply, as shown in 

Figure 24.  The fibers were taped at the ends to the work table, fixing them in place for the embedding process. 
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Figure 24: First carbon ply and the middle layer of FBG sensors (Fibers 2 and 5) put in place. 

 

The second carbon ply was then placed atop the middle layer of FBGs.  Epoxy was then applied to the fabric, as 

before.  Then, the top layer of the 3x2x2 array (Fibers 1 and 4 in Figure 25) was moved atop the second carbon ply, 

as shown in Figure 25. 

 

 
Figure 25: Second carbon ply and the top layer of FBG sensors (Fibers 1 and 4) in put in place. 

 

 

 



 

 

34 

 
B.3 Curing Process 

With the FBG sensor array embedded in the composite layup, the epoxy resin required time to cure.  To aid the 

curing process, a vacuum bag was created using the bagging material; the partial vacuum pressure removes air 

bubbles lodged in the layup materials.  A line of vacuum sealant tape was placed around the perimeter of the 

bagging material sheet, allowing for an air-tight seal, even overtop the protruding fibers.  A second sheet of bagging 

material (15”x15”) was then cut, placed atop the layup, and sealed against the sealant tape to create the vacuum bag.  

A vacuum pump was connected to the bag to apply the vacuum condition.  Unfortunately, a pressure gauge was not 

available to monitor the vacuum pressure achieved inside the bag.  Figure 26 shows the final setup for the curing 

process.  

 

 
Figure 26: Final composite curing setup.  The bagging material and sealant tape are used to create an air-tight 

bag enclosing the composite structure.  The vacuum pump created a partial vacuum within the bag. 

 

To ensure the composite cured properly, additional external pressure was required.  The industrial-strength presses 

available during this research were too strong for this sensitive procedure; even at the lowest pressure settings, the 

press would crush the fragile optical fibers.  Therefore, the additional pressure needed for the curing process was 

achieved using external weight.  To protect the fibers in the layup, a thin piece of foam was laid atop the composite 

layup.  Next, a caul plate was used to evenly distribute the additional pressure across the composite surface.  Lastly, 

weights were stacked atop the caul plate to apply an additional 2 psi of external pressure (roughly 50 lbs. distributed 

over the 23 in
2
 surface area of the composite structure).  A vertical cross-section of this setup is given in Figure 27. 
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Figure 27: Vertical cross-section of the setup for curing the composite structure under external pressure. 

 

The composite layup was allowed to cure overnight (~12 hours) at room temperature (20°C).  After the epoxy had 

completely hardened, the vacuum pump was removed and the vacuum bag was cut away.  The final product was a 

3x2x2 FBG array embedded in a two-ply carbon/epoxy composite structure, as photographed in Figure 28. 

 

 
Figure 28: A 3x2x2 FBG array embedded in a two-ply carbon/epoxy composite.  The six optical fibers are 

shown protruding out each end of the composite structure.  The two circular flaws on the composite surface 

are the result of the later infrared laser testing and are not associated with this embedding procedure. 


